ANSI/HI 9.6.1-1998 离心和垂直泵:NPSH界限

作者:标准资料网 时间:2024-05-17 08:48:50   浏览:8913   来源:标准资料网
下载地址: 点击此处下载
【英文标准名称】:CentrifugalandVerticalPumps:NPSHMargin
【原文标准名称】:离心和垂直泵:NPSH界限
【标准号】:ANSI/HI9.6.1-1998
【标准状态】:作废
【国别】:美国
【发布日期】:1998
【实施或试行日期】:
【发布单位】:美国国家标准学会(ANSI)
【起草单位】:
【标准类型】:()
【标准水平】:()
【中文主题词】:离心泵;抽油装置
【英文主题词】:centrifugalpumps;pumpinginstallation
【摘要】:
【中国标准分类号】:J71
【国际标准分类号】:23_080
【页数】:
【正文语种】:英语


下载地址: 点击此处下载
基本信息
标准名称:粉末涂料 第12部分:相容性的测定
英文名称:Coating powders—Part 12:Determination of compatibility
中标分类: 化工 >> 涂料、颜料、染料 >> 涂料基础标准与通用方法
ICS分类: 涂料和颜料工业 >> 涂料和清漆
发布部门:中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会
发布日期:2010-09-26
实施日期:2011-08-01
首发日期:2010-09-26
作废日期:
主管部门:全国涂料和颜料标准化技术委员会(SAC/TC 5)
提出单位:中国石油和化学工业协会(SAC/TC251)
归口单位:全国涂料和颜料标准化技术委员会(SAC/TC 5)
起草单位:广东出入境检验检疫局和中海油常州涂料化工研究院
起草人:周明辉、陈强、刘莹峰、李丹、翟翠萍、赵玲、萧达辉、郑建国、李全忠
出版社:中国标准出版社
出版日期:2011-08-01
页数:8页
适用范围

GB/T21782的本部分是色漆、清漆及相关产品取样和试验方法系列标准之一。
本部分规定了两种不同粉末涂料混合而导致最终涂层的表面性能劣化的测定方法。
本方法的结果取决于粉末涂料的下列性质:a.化学反应性;b.化学成分;c.熔融性。外观恶化的开始反应,其实质和状况在很大程度上取决于粉末的混合比例。表面外观恶化的实质可能通过不同途径表现出来:a.光泽的改变;b.针孔,包括微小针孔;c.“桔皮”外观;d.“缩孔”;e.起块;f.色混。
本方法也适用于在粉末涂料的生产和使用过程中,由不同粉末涂料混合而产生不相容的测试。

前言

没有内容

目录

没有内容

引用标准

下列标准中的条款通过GB/T21782的本部分的引用而成为本部分的条款。本部分出版时,以下所示版本均为有效版本。所有标准均会被修订,鼓励基于本部分达成协议的各方研究使用以下标准的最新版本。IEC和ISO 成员保有现行有效的国际标准号。
GB/T9754—2007 色漆和清漆 不含金属颜料的色漆漆膜的20°、60°和85°镜面光泽的测定(ISO2813:1994,IDT)
GB/T21782.9—2010 粉末涂料 第9部分 取样(ISO8130-9:1992,IDT)
ISO1514:2004 色漆和清漆 标准试板

所属分类: 化工 涂料 颜料 染料 涂料基础标准与通用方法 涂料和颜料工业 涂料和清漆

MIL-HDBK-1211, MILITARY HANDBOOK: MISSILE FLIGHT SIMULATION, (PART ONE), SURFACE-TO-AIR MISSILES (17 JUL 1995)., Guided missile technology embraces almost all of the physical sciences, and missile flight simulation can simulate almost any missile function to whatever degree of realism is required or affordable. To cover all aspects with all degrees of simulation complexity in a single volume would clearly be impractical. Therefore, in the interests of practicality and utility, this handbook is limited to flight simulations of surface- to-air missiles used by the US Army. Because many functions are basically common to a wide variety of missile types, however, this information will also be useful to those interested in other types of missiles. A broad range of model sophistication is covered in the handbook because it is important that the level of sophistication of a simulation model be matched to the specific purposes of the simulation. For some applications it is unnecessary to calculate the missile rotational behavior directly from the aerodynamic characteristics. For these applications, equations of motion with three translational degrees of freedom are adequate. In cases in which the missile rotational behavior is critical and simplified methods are not acceptable, the equations of motion must contain at least two, and sometimes three, additional degrees of freedom. The equations and methods for both three- and six-degree-of-freedom models are presented. Very simple and moderately complex mathematical seeker models are given, and the we of actual flight hardware or breadboard hardware in the simulation is described. Very specialized missile system component simulation techniques are beyond the scope of this handbook. Representative examples of modeling topics that are beyond the scope are detailed seeker signal processing, propellant grain burning dynamics, detailed servo system component simulation, complex aerodynamic cross coupling, airframe deflection and flutter, and fuze and warhead operation. Equations and simulation methodology are given for all the major subsystems of surface-to-air missiles. The basic simulation equations can be implemented by either digital or analog means; however, since by far the greatest proportion of current flight simulations uses digital computation. digital methods are emphasized.